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A model is proposed to describe DSS-14 outage times. Discrepancy Reporting

System outage data for the period from January 1986 through September 1988 are

used to estimate the parameters of the model. The model provides a probability

distribution for the duration of outages, which agrees well with observed data.

The model depends only on a small number of parameters, and has some heuristic

justification. This shows that the Discrepancy Reporting System in the DSN can

be used to estimate the probability of extended outages in spite of the discrepancy

reports ending when the pass ends. The probability of an outage extending beyond

the end of a pass is estimated as around 5 percent.

I. Introduction

A model is proposed to describe DSS-14 outage times.

Outage data for the period from January 1986 through

September 1988 are used to estimate the parameters of the

model. The model provides a probability distribution for

the duration of the outages. The model does not address

questions about the mean time between outages. However,

it does allow estimation of the probability of major outages

even though the Discrepancy Reporting (DR) system stops

recording them at the end of a pass. The philosophy has

been that the best model is the simplest one that fits well

enough.

The nature of the model, as above, is affected by the

way outages are reported. If an extended outage occurs,

1 Consultant to the TDA Office from Laguna Niguel,
California.

the time to restore service is not reported. Only the time

lost for that pass is recorded. This limitation makes it

difficult to determine the actual outage durations from the
DR data and must be accounted for in the model. In the

model, it is assumed that the actual time to restore service

is hidden by a "cutoff" process which corresponds to the

end of the pass. A typical pass runs for 9 hours. This

means that the actual time to restore service is masked

by a 9-hour cutoff window. (In developing the model, 8-,

9-, and 10-hour cutoffs were tried, with 9 fitting best and

being reasonable on other considerations.)

II. Outage Distribution

Let R(t) be the distribution function for reported out-

age durations, and let A(t) be the distribution function for

actual outage durations. Assuming the "cutoff" process

and outage durations are independent, then for t >_ 0,
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or

Pr(reported time > t)

= Pr(actual time > t)Pr(cutoff time > t)

1 - R(t) = (1 - A(t))(1 - t/U)+ (1)

Pr(reported time > t) = 1 - R(t)

= ((1 - a)(1 + t/a)e -`la

+ a(1 + rib)e-rib)(1 -- t/U)+

(2)

where U is the duration of the pass (nominally 9 hours)

and (1 - t/U)+ is 0 for t > U. Equation (1) assumes that

the start time of an outage is uniformly distributed over

the duration of the pass.

Equation (1) deals with the "cutoff" problem but says

nothing about the actual distribution of outages A(t). The

model for A(t) is based on the reported outage data and a

desire to minimize the number of parameters in the model.

Figure 1 shows this measured outage data from the DR

system, accurate to one minute. Thus, some minutes show

multiple outages. There are 498 outages presented in this

figure. The mean time to restore service is about 40 min-
utes.

The simplest model to fit such data would be an ex-

ponential distribution. The distribution function of an ex-

ponential random variable X of a mean a is given by

F(t) = Pr(X < t) = 1- e-'la

The fit is not accurate for short outages because Fig. 1

shows the density goes to 0 at 0-length outages, but an

exponential has maximum density at 0-length outages. An

exponential random variable with mean around 40 minutes

fits the first part of the outage data fairly well beyond a few

minutes up to about 100 minutes, but there are too many

extreme values (t > 100 minutes) in the outage data. This

suggests that there are two (or more) classes of failures, in

addition to the short failures. For the first class of long

failures, service can be restored quickly, in less than 40

minutes on the average. The second class of long failure

requires more time to overcome.

The form for this tail distribution has been taken to make

the density function (essentially) zero at t = 0. Observe

that if Ta is a random variable with distribution function

1- (1 +t/a)e -t/a, then the expected value of Ta is 2a while

the maximum of the density function of Ta occurs at t = a.

The parameters a and b occur symmetrically in

Eq. (2). If a is chosen to be the smaller value, then out-

ages of class "a" can be arranged to peak around t = 10

minutes. Outages of class "b" can be arranged to fit the

tails of the observed outages. More heuristics appear in

Section VI.

IV. Parameter Estimation

Equation (2) defines the model. To complete the

model, good values for the parameters U, a, a, and b must
be found. The maximum likelihood method will be used to

estimate the parameters. Let (Q,...,tn) be the reported

outage times. The ts are reported by the DR system to

the nearest minute. Let t be one of the outage times. The

models specify the probability p(t) that an outage has du-

ration t, where t is measured in minutes. Namely,

p(t) = R(t + 1/2) - R(t - 1/2)

where R is determined by Eq. (2). The probability that

the observed outages occurred is the product of the prob-

abilities of the separate outages,

1-Ip(t )
j=l

III. Model

The following model has been adopted, with three pa-

rameter a, a, and b to be estimated, since U is 9 hours and
not estimated:

This product is the likelihood function of the observations.

It is a function of the model parameters U, a, a, and b.

Maximum likelihood says to choose these parameters to

maximize this product. The maximization is easy in this

case because there are so few parameters.
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There is a minor problem in determining the best

value for the parameter U. Recall that U is the cutoff time

for the pass. Finding U is like finding the end point of an

interval (0, U) in which a uniform random variable occurs.

A little thought shows that the likelihood function for such

a problem is maximized by taking U to be as small as pos-

sible. In the case of interest here, this would correspond

to taking U to be slightly less than 8 hours (the maximum

reported outage is 462 minutes). If extreme outages were

common, this "defect" in the maximum-likelihood method

would be no problem. Yet, the number of extended out-

ages is small. So rather than estimate U from the likeli-

hood function, U has been taken to be 9 hours throughout.

To see how this selection affects the results, U = 8 and 10

hours for the case Fb -- 1 were also tried. As expected,

U = 8 hours gives a larger value for the likelihood func-

tion, but the other parameters a and a are hardly changed.

The results for U = 10 hours were not as good. Only

U = 9 hours is considered below. This is consistent with

the known distribution of pass lengths.

V. Goodness of Fit

A grid of points was used to find the maximum-

likelihood values for the parameters. The maximum-

likelihood values found were

a = 0.186

a = 11.4 minutes

b = 77.5 minutes

The corresponding distribution function is then given by

played in Fig. 2. Qualitatively, the model fits the observed

outages very well, for short, medium, and long outages.

The mean time MTR to restore service for the model.

is given by

where

MTR = (1 - a)aT(Ula) + abT(U/b)

T(x) = 2 - 3Ix + (1 + 3/x)e -_

Substituting for a, a, b, and U = 9 hours (540 minutes) as

always gives

MTR = 40.6 minutes

This is in excellent agreement with the observed MTR of

40.4 minutes.

The probability that an outage exceeds 150 minutes

was computed. With 498 outages, the model predicts there

should be 28.4 outages of duration 150 minutes or longer.

In the actual data of 498 outages there were 24 outages

of this duration. Since the extended outage statistics are

expected to be Poisson with an estimated mean of 28.4 and

thus a sigma of _ = 5.33, the discrepancy of 4.4 is less

than one sigma. This fits as well as could be expected

with only 24 events. The probability of short and medium

outages is also seen to fit very well. Hence, the use of the
model seems indicated.

Pr(reported outage _ t) =

0.814(1 + t/ll.4)e -t/ll'4

+0.186(1 + t/77.5)e -t/77s] (1 - t/540)+

This equation represents the model. To see how well

this model fits the observed outage data, the outage data

was smoothed with a 5-point smoothing filter. The same

filter was applied to the model as well. The results are dis-

VI. Heuristics

It can be expected that the density of outages near

zero outage time is very nearly 0, because it takes some

minimum time to notice an outage and to respond to it,

even by switching in a hot standby automatically. The

(1 + t/a)e -'/a term in Eq. (2) does just this--it has den-

sity 0 at 0, for the corresponding density is (t/a2)e -fla.

This density also covers intermediate outages, but so does

the "b" class. One might think that yet another distribu-

tion should be mixed in to cover these intermediate outages

that cannot be recovered merely by switching something
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in. But as has been seen, adding an extra one or two pa-

rameters is not necessary--the fit is very good with just

the single time parameter a, the location of the maximum

density of the short and medium outages, and the addi-

tional parameter a which gives the relative fraction of long

outages.

The long outages are described by a similar distribu-

tion (1 + t/b)e-Ub with b >> a. Why the tail of this and

the shorter-outage distribution should be exponential is

less clear, but the fit is good, and hard to tell from a dis-

tribution with a long low constant tail given the amount

of data. It can be observed that the form of the a and

b distribution arises as a difference of pure exponentials

with infinitesimally close memoryless repair rates, but this

does not seem to help the heuristics. The long tail can
arise from certain failures such as low-noise maser warm

up that takes a certain minimum time, e.g., 12 hours to

recover from, when hot standbys for switching in are not

provided.

Finally, as explained, the (1 - t/U)+ multiplier term

in Eq. (2) arises from the truncation of outage data at the

end of a pass, where it was assumed that failures occur uni-

formly over the duration (U = 9 hours) of a pass. It is this

truncation which makes it hard to distinguish a negative

exponential tail from a long fiat tail. The three-parameter

model has been adopted even though the heuristics are not

perfect.

VII. Summary

It has been shown that the Discrepancy Reporting

System in the DSN can be used to give good estimates of

the probability of extended outages in spite of the discrep-

ancy reports ending when the pass ends. The probability of

a major outage (one extending beyond the end of a pass)

is estimated by the best-fit model as around 5 percent.

The model also gives good estimates for the probability of

short, medium, and long outages. It is simple and yet fits

very well.
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Fig. 1. DSS-14 outage times, January 1986-September 1988.

¢¢

48O

18

16

14

(/3

_3 12

"" 8

_ 6
Z

I I I I

SMOOTHED FREQUENCIES FOR 498 OUTAGES

I I I

f SMOOTHED FREQUENCIES FOR 498 OUTAGESFROM THE DISTRIBUTION:

1 ° (0.814F(t/11.4) + 0.186F(t/77.5)) (1 -t/540)+
WHERE F(t) = (1 + t) e -t

\
I

o __'v_,_-_.___,____,__ __ .m

0 60 120 180 240 300 360

OUTAGE TIME, minutes

Fig. 2. Smoothed DSS-]4 outage times, January 1986-September 1988
compared with model.
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